

Video Services Forum (VSF) Technical
Recommendation TR-06-2:2020 Deprecation

Notice

April 22, 2021

VSF Technical Recommendation TR-06-2:2020 defined a Pre-Shared Key (PSK) operation mode, where
a secret passphrase is distributed through some out-of-band means to every participating node. The
passphrase is used to derive a 128-bit or 256-bit key. Content is encrypted using AES-CTR and this key.

AES-CTR operates by encrypting a set of Initialization Vectors (IVs) to create ciphertext blocks, which
are subsequently XOR-ed with the message. This method is secure as long as IVs are not re-used with the
same key.

The IV generation method specified in TR-06-2:2020 Section 7.2 and illustrated in Figure 6 is insecure
because IVs are partially reused from packet to packet. This issue is addressed in TR-06-2:2021.
However, PSK implementations following TR-06-2:2020 are NOT interoperable with TR-06-2:2021. A
version field has been added to the packet headers in TR-06-2:2021 to allow secure implementations to
identify TR-06-2:2020 devices, if desired.

Additionally, the optional PSK Authentication method described in Section 7.5 was found to be too
cumbersome to implement and has been deprecated. A new method is included in TR-06-2:2021.

Implementation of the PSK functionality as described in TR-06-2:2020 IS NOT recommended due
to security issue described in this note.

For additional information about the RIST Activity group, or to find out about participating in the
development of future specifications, please visit http://vsf.tv/RIST.shtml

Approved by VSF Board

March 24, 2020

Video Services Forum (VSF)
Technical Recommendation TR-06-2

	
Reliable	Internet	Stream	Transport	(RIST)	
Protocol	Specification	–	Main	Profile	

2020-03-24 2 VSF TR-06-2

INTELLECTUAL PROPERTY RIGHTS

THE FORUM DRAWS ATTENTION TO THE FACT THAT IT IS CLAIMED THAT
COMPLIANCE WITH THIS RECOMMENDATION MAY INVOLVE THE USE OF A PATENT
("IPR") CONCERNING SECTIONS 5 (EXCEPT SECTION 5.5.4), 6, AND 7.

 THE FORUM TAKES NO POSITION CONCERNING THE EVIDENCE, VALIDITY OR
SCOPE OF THIS IPR.

 THE HOLDER OF THIS IPR HAS ASSURED THE FORUM THAT IT IS WILLING TO
LICENSE ALL IPR IT OWNS AND ANY THIRD PARTY IPR IT HAS THE RIGHT TO
SUBLICENSE WHICH MIGHT BE INFRINGED BY ANY IMPLEMENTATION OF THIS
RECOMMENDATION TO THE FORUM AND THOSE LICENSEES (MEMBERS AND NON-
MEMBERS ALIKE) DESIRING TO IMPLEMENT THIS RECOMMENDATION.
INFORMATION MAY BE OBTAINED FROM:

 VIDEO-FLOW.LTD
11 HA'AMAL ST. ROSH HA'AYIN ISRAEL, 4809241

 ATTENTION IS ALSO DRAWN TO THE POSSIBILITY THAT SOME OF THE ELEMENTS
OF THIS RECOMMENDATION MAY BE THE SUBJECT OF IPR OTHER THAN THOSE
IDENTIFIED ABOVE. THE FORUM SHALL NOT BE RESPONSIBLE FOR IDENTIFYING
ANY OR ALL SUCH IPR.

THIS RECOMMENDATION IS BEING OFFERED WITHOUT ANY WARRANTY
WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS
EXPRESSLY DISCLAIMED. ANY USE OF THIS RECOMMENDATION SHALL BE MADE
ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE FORUM, NOR
ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY
WHATSOEVER TO ANY MPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF
ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE
OF THIS RECOMMENDATION.

LIMITATION OF LIABILITY

© 2020 Video Services Forum

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0
International License. To view a copy of this license, visit

https://creativecommons.org/licenses/by-nd/4.0/

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

http://www.videoservicesforum.org

2020-03-24 3 VSF TR-06-2

VSF SHALL NOT BE LIABLE FOR ANY AND ALL DAMAGES, DIRECT OR INDIRECT,
ARISING FROM OR RELATING TO ANY USE OF THE CONTENTS CONTAINED HEREIN,
INCLUDING WITHOUT LIMITATION ANY AND ALL INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS,
LOSS OF PROFITS, LITIGATION, OR THE LIKE), WHETHER BASED UPON BREACH OF
CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT
LIABILITY OR OTHERWISE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THE FOREGOING NEGATION OF DAMAGES IS A FUNDAMENTAL
ELEMENT OF THE USE OF THE CONTENTS HEREOF, AND THESE CONTENTS WOULD
NOT BE PUBLISHED BY VSF WITHOUT SUCH LIMITATIONS.

2020-03-24 4 VSF TR-06-2

Executive Summary

Many solutions exist in the market for reliable streaming over the Internet. These solutions all
use the same types of techniques, but they are all proprietary and do not interoperate with each
other. This Technical Recommendation contains a protocol specification for reliable streaming
over the Internet, so end users can mix and match solutions from different vendors.

Recipients of this document are requested to submit notification of any relevant patent claims or
other intellectual property rights of which they may be aware that might be infringed by any
implementation of the Recommendation set forth in this document, and to provide supporting
documentation.

2020-03-24 5 VSF TR-06-2

Table	of	Contents	
Table of Contents ... 5

1 Introduction (Informative) ... 7

1.1 Contributors .. 7

1.2 About the Video Services Forum .. 7

2 Conformance Notation .. 8

3 References ... 9

4 RIST Profiles (Informative) ... 9

5 Stream Multiplexing and Tunneling Support .. 10

5.1 General Operation ... 10

5.2 Tunneling Modes .. 12

5.2.1 Full Datagram Mode .. 12

5.2.2 Reduced Overhead Mode .. 12

5.3 Processing of Tunnel Packets at the Receiving End ... 13

5.4 Tunnel-Level Multi-Path Operation ... 14

5.5 Tunnel Establishment .. 14

5.5.1 Introduction (Informative) ... 14

5.5.2 Keep-Alive Message Requirements .. 15

5.5.3 Keep-Alive Message Format ... 15

5.5.4 Keep-Alive Message Payload .. 17

5.5.4.1 Example Exchange (Informative) .. 18

5.5.5 Disconnect Message .. 20

5.5.6 Reconnect Message ... 20

5.5.7 Source and Destination IP Addresses in Tunneled RIST Packets 21

5.5.8 Keep-Alive Message Fragmentation ... 22

6 DTLS Support .. 22

6.1 Session Establishment ... 22

6.2 Supported DTLS Cipher Suites .. 23

6.3 Certificate Configuration .. 23

2020-03-24 6 VSF TR-06-2

6.4 TLS-SRP Support ... 24

7 Pre-Shared Key Encryption Support ... 24

7.1 GRE Header with K Field Turned On .. 24

7.2 Sequence and Nonce ... 25

7.3 AES Encryption Key and Sequences .. 26

7.4 On-The-Fly Passphrase Change .. 26

7.5 PSK Authentication Using EAPOL-TLS-SRP ... 28

8 NULL Packet Deletion and High Bitrate Operation ... 28

8.1 NULL Packet Deletion (Informative) ... 28

8.2 High Bitrate and/or High Latency Operation (Informative) ... 29

8.3 RTP Header Extension to Support NULL Packet Deletion and Extended Sequence
Numbers ... 29

8.4 NACK Packet Support for Extended Sequence Numbers .. 30

8.5 NULL Packet Deletion Example (Informative) .. 31

8.6 Combining NULL Packet Deletion and Sequence Number Extension with SMPTE-
2022-1 FEC .. 33

8.6.1 Sequence Number Extension ... 33

8.6.2 NULL Packet Deletion .. 33

9 Compatibility between RIST Main Profile and Simple Profile Devices 34

Appendix A Certificate Management (Informative) .. 35

A.1 Certificate Processing ... 35

A.2 Discussion of Certificate Authorities (CA) ... 35

A.3 Remote Certificate Processing at the Local RIST Device .. 36

A.4 Notes on Whitelists and Blacklists .. 36

A.5 Certificate Signing Requests ... 36

A.6 Certificate and Key File Formats .. 37

Appendix B PSK Key Generation Example (Informative) .. 39

Appendix C Supporting Multiple Clients Using the Same Server UDP Port (Informative) 40

2020-03-24 7 VSF TR-06-2

1 Introduction	(Informative)	

As broadcasters and other video users increasingly utilize unconditioned Internet circuits to
transport high-quality video, the demand grows for systems that can compensate for the packet
losses and delay variation that often affect these streams. A variety of solutions are currently
available on the market; however, incompatibilities exist between devices from different
suppliers.

The Reliable Internet Stream Transport (RIST) project was launched specifically to address the
lack of compatibility between devices, and to define a set of interoperability points through the
use of existing or new standards and recommendations.

1.1 	Contributors	
The following individuals participated in the Video Services Forum RIST working group that
developed this technical recommendation.

Merrick Ackermans (MVA
Broadcast Consulting)

Sergio Ammirata (DVEO) Paul Atwell (Media Transport
Solutions)

Uri Avni (Zixi) John Beer (QVidium) Rishi Chhibber (Cisco)
Mike Coleman (AWS
Elemental)

Eric Fankhauser (Evertz) Ronald Fellman (QVidium)

Michael Firth (Nevion) Rafael Fonseca (Artel) Oded Gants (Zixi)
Nick Nicas (AT&T) Ciro Noronha (Cobalt

Digital)
Hermann Popp (Arri)

Steve Riedl (Turner) Adi Rozenberg (VideoFlow) Manjinder Sandhu (Evertz)
Wes Simpson (Telecom
Product Consulting)

Mikael Wånggren (Net
Insight)

This technical recommendation builds upon VSF TR-06-1. The list of contributors to TR-06-1
can be found in section 1.1 of that document.

1.2 	About	the	Video	Services	Forum	

The Video Services Forum, Inc. (www.videoservicesforum.org) is an international association
dedicated to video transport technologies, interoperability, quality metrics and education. The
VSF is composed of service providers, users and manufacturers. The organization’s activities
include:

• providing forums to identify issues involving the development, engineering, installation,
testing and maintenance of audio and video services;

• exchanging non-proprietary information to promote the development of video transport
service technology and to foster resolution of issues common to the video services industry;

• identification of video services applications and educational services utilizing video
transport services;

2020-03-24 8 VSF TR-06-2

• promoting interoperability and encouraging technical standards for national and
international standards bodies.

The VSF is an association incorporated under the Not For Profit Corporation Law of the State of
New York. Membership is open to businesses, public sector organizations and individuals
worldwide. For more information on the Video Services Forum or this document,
please call +1 929-279-1995 or e-mail opsmgr@videoservicesforum.org.

2 Conformance	Notation	
Normative text is text that describes elements of the design that are indispensable or contains the
conformance language keywords: "shall", "should", or "may". Informative text is text that is
potentially helpful to the user, but not indispensable, and can be removed, changed, or added
editorially without affecting interoperability. Informative text does not contain any conformance
keywords.

All text in this document is, by default, normative, except the Introduction and any section
explicitly labeled as "Informative" or individual paragraphs that start with "Note:”

The keywords "shall" and "shall not" indicate requirements strictly to be followed in order to
conform to the document and from which no deviation is permitted.

The keywords, "should" and "should not" indicate that, among several possibilities, one is
recommended as particularly suitable, without mentioning or excluding others; or that a certain
course of action is preferred but not necessarily required; or that (in the negative form) a certain
possibility or course of action is deprecated but not prohibited.

The keywords "may" and "need not" indicate courses of action permissible within the limits of
the document.

The keyword “reserved” indicates a provision that is not defined at this time, shall not be used,
and may be defined in the future. The keyword “forbidden” indicates “reserved” and in addition
indicates that the provision will never be defined in the future.

A conformant implementation according to this document is one that includes all mandatory
provisions ("shall") and, if implemented, all recommended provisions ("should") as described. A
conformant implementation need not implement optional provisions ("may") and need not
implement them as described.

Unless otherwise specified, the order of precedence of the types of normative information in this
document shall be as follows: Normative prose shall be the authoritative definition; Tables shall
be next; followed by formal languages; then figures; and then any other language forms.

2020-03-24 9 VSF TR-06-2

3 References		
VSF TR-06-1, Reliable Internet Stream Transport (RIST) Protocol Specification –
Simple Profile

IETF RFC 2784, Generic Routing Encapsulation (GRE)

IETF RFC 2890, Key and Sequence Number Extensions to GRE

IETF RFC 3550, RTP: A Transport Protocol for Real-Time Applications

IETF RFC 3686, Using Advanced Encryption Standard (AES) Counter Mode With
IPsec Encapsulating Security Payload (ESP)

IETF RFC 5054, Using the Secure Remote Password (SRP) Protocol for TLS
Authentication

IETF RFC 5216, The EAP-TLS Authentication Protocol

IETF RFC 6347, Datagram Transport Layer Security Version 1.2

IETF RFC 7468, Textual Encodings of PKIX, PKCS, and CMS Structures

IETF RFC 8018, PKCS #5: Password-Based Cryptography Specification Version 2.1

IETF RFC 8086, GRE-in-UDP Encapsulation

IETF RFC 8259, The JavaScript Object Notation (JSON) Data Interchange Format

IETF RFC 8285, A General Mechanism for RTP Header Extensions

IEEE Std 802.1X-2010, Port-Based Network Access Control

SMPTE ST 2022-1:2007, Forward Error Correction for Real-Time Video/Audio
Transport Over IP Networks

SMPTE ST 2022-2:2007, Unidirectional Transport of Constant Bit Rate MPEG-2
Transport Streams on IP Networks

4 RIST	Profiles	(Informative)	
 RIST has multiple operational profiles, corresponding to increasing levels of complexity and
functionality. Higher profiles include all the features and functionality of the preceding profiles.
This document defines RIST Main Profile, which adds the following features to VSF TR-06-1
RIST Simple Profile:

• Stream multiplexing support

2020-03-24 10 VSF TR-06-2

• Tunneling support
• Encryption support using DTLS
• Pre-Shared Key encryption support
• NULL packet deletion (for bandwidth optimization)
• High bitrate/high latency operation

A profile roadmap is included in TR-06-1.

5 Stream	Multiplexing	and	Tunneling	Support	
The objective of stream multiplexing and tunneling is to provide the ability to combine all the
communication between two RIST devices into a single UDP port, to which encryption can be
applied. Encryption is provided either by DTLS as described in section 6, or by Pre-Shared Key,
as described in section 7. The use of tunneling also simplifies firewall configuration. The
features provided are:

RIST devices compliant with this specification shall support all the functions below:

• Combining the RTP and RTCP flows into a single port, in a manner compliant with
RIST Simple Profile.

Optionally, RIST devices compliant with this specification may support the functions below:

• Combining multiple RIST flows into a single port.
• Providing support for transporting generic IP traffic into that same socket, in a manner

similar to a VPN, typically for in-band control of remote devices (e.g., SNMP
management).

The functions above shall be achieved using GRE-over-UDP per RFC 8086, with the constraints
and additions described below.

5.1 General	Operation	
A tunnel is established between two endpoints. The endpoint that listens for a connection is
called the server, and the endpoint that initiates the tunnel connection is called the client.
Operation shall follow RFC 8086, with the additions, changes and exceptions indicated below:

• The roles of RIST sender and receiver are independent of the roles of server and client.
The device that starts the tunnel is known as the client. Once the tunnel is established,
streams may flow in either direction. Tunnel establishment is described in section 5.5.

• Streams running through the tunnel shall comply with VSF TR-06-1, RIST Simple
Profile.

2020-03-24 11 VSF TR-06-2

• RIST devices may use arbitrary UDP port numbers for the tunnel. RFC 8086
recommends the use of port 4754 if the traffic is in the clear, or port 4755 if the traffic is
encrypted using DTLS, but RIST devices are not constrained by these choices.

• The server shall listen for GRE packets on a UDP port that has been pre-configured by
the user. The server receives packets from the client on this port. The client may use any
port number as its source port. The server shall direct packets to that source port number
on the client.

• RIST devices may use a tunnel to send multiple RTP/RTCP flows.
• RIST devices may allow the tunnel to be used for other types of traffic, e.g., for in-band

control. If such a function is provided, it shall be possible for the user to configure what
types of traffic are allowed in the RIST tunnel, or to completely exclude non-RIST traffic
from the tunnel.

• RIST devices shall discard unsupported tunneled packets. Section 5.5.3 allows the use of
GRE packets for the tunnel keep-alive function; unsupported tunneled packets, even
though discarded, shall be deemed to be keeping the tunnel alive if present.

• When transmitting, devices compliant with this specification should set the C
(Checksum) field in the GRE header to zero to reduce overhead. The S (Sequence
Number) and K (Key) shall be used as follows:

o When using a pre-shared key with RIST, as described in section 7, the S field
shall be set to 1 and a valid sequence number shall be included in the packet. The
K field shall also be set to 1. The usage of the S field is described in section 7.1.

o Transmitting devices not using pre-shared key shall set the K field to zero.
o If the communicating devices support non-RIST traffic in the tunnel, the S field

should be set to 1 and a valid sequence number should be included in the packet.
o In all other situations, the use of the S field is optional.

• When receiving, devices compliant with this specification shall inspect the C, K and S
bits in order to compute the GRE header size. Receiving devices may or may not actually
process and verify the Checksum field. Devices not working in Pre-Shared Key mode
(section 7) shall not be required to process the Key field. If the Sequence Number field is
present (S=1), receiving devices should use it to re-order the tunnel packets.

A GRE header with no options is depicted in Figure 1 (fields are in network byte order, MSB
first):

A GRE header with sequence number is depicted in Figure 2:

+-+
|0| |0|0| Reserved0 | Ver | Protocol Type |
+-+

Figure 1: GRE header with no options

2020-03-24 12 VSF TR-06-2

The Reserved0 field shall be set to 0 (zero) by the sender and shall be ignored by the receiver.

5.2 Tunneling	Modes	
Two tunneling modes are specified in this document:

• Full Datagram Mode: This mode shall be supported in all implementations of this
specification. In this mode, the GRE payload is a full layer-3 IP packet. All RIST
devices compliant with Main Profile shall support this mode as a means of stream
multiplexing. If the RIST device supports encapsulation of non-RIST traffic, this feature
shall be disabled by default, and shall be enabled only by explicit user intervention.

• Reduced Overhead Mode: In this mode, a reduced header as defined in section 5.2.2
shall be used. Implementation of this mode will require the Video Services Forum to
register an EtherType. This Specification proposes an interim value for the EtherType,
which may change in the future. Support for Reduced Overhead Mode is optional.

5.2.1 Full	Datagram	Mode	
In this mode, a full IP packet shall be encapsulated as the GRE payload, starting from the IP
header. The Protocol Type field in the GRE header shall be set to 0x0800, the default EtherType
for IP.

5.2.2 Reduced	Overhead	Mode	
In this mode, the encapsulated packet is assumed to be a UDP packet. Implementations shall use
the value of 0x88B6 for the Protocol Type field. The GRE payload shall start with the subset of
the UDP header indicated in Figure 3, denoted as “Reduced UDP Header”. Fields shall be in
network byte order, MSB first.

The receiving RIST device shall make the following assumptions for an incoming Reduced
Overhead packet:

• The payload following the Reduced UDP Header represents the payload of a UDP
packet.

+-+
|0| |0|1| Reserved0 | Ver | Protocol Type |
+-+
| Sequence Number |
+-+

Figure 2: GRE header with sequence number

+-+
| UDP Source Port | UDP Destination Port |
+-+

Figure 3: Reduced UDP Header

2020-03-24 13 VSF TR-06-2

• The receiving tunnel end point shall assume that the packet is destined for it, and sourced
from the remote tunnel endpoint.

• The other IP header fields shall be assumed to be the same as the IP packet bearing the
GRE payload, if relevant.

• Because the checksum field is not present, receiving RIST devices shall assume that the
checksum of the encapsulated UDP packet is correct.

• The payload size of the encapsulated UDP packet shall be derived from the payload size
of the received GRE packet. More specifically, the payload size of the encapsulated UDP
packet shall be assumed to be equal to the payload size of the received UDP packet minus
the GRE header size (4, 8 or 12 bytes) minus the Reduced UDP Header size (4 bytes).

• The source and destination UDP ports for the encapsulated packet shall be the source and
destination UDP ports from the Reduced UDP Header.

5.3 Processing	of	Tunnel	Packets	at	the	Receiving	End	
The RIST device receiving GRE encapsulated packets shall process them as follows:

• Reduced Overhead Mode:
o The receiving device shall assume that the encapsulated packet is destined for it.
o The receiving device shall process the packet payload in the same way as if it had

received a UDP packet addressed to it, from the sender of the GRE packet, with
source and destination UDP ports as specified by the Reduced UDP Header.

• Full Datagram Mode: In this mode the receiving device will extract a layer-3 IP packet
from the GRE tunnel. This packet shall be known in this document as an “Extracted
Packet”.

o The reception of any Extracted Packet from the GRE tunnel shall be deemed
sufficient for keep-alive purposes, even if the Extracted Packet is discarded.

o Receiving devices shall accept and process the Extracted Packets, in the same
manner as if they had been directly received by a local network interface, if all of
the following conditions are true:

§ The Extracted Packet is a UDP packet.
§ The destination UDP port in the Extracted Packet is for a socket/flow the

receiving device is currently configured to accept and process.
§ The destination IP address in the Extracted Packet matches an address the

receiving device is prepared to accept. This includes multicast addresses
that the receiving device has been configured to receive, as well as any
unicast IP addresses deemed acceptable by the receiving device.

o Receiving devices may discard Extracted Packets that do not match the above
rules.

o Receiving devices may choose to check the IP header checksum for the Extracted
Packet. If the Extracted Packet is a UDP packet, the receiving device may choose
to check the UDP checksum (if present).

2020-03-24 14 VSF TR-06-2

o If a receiving device accepts Extracted Packets, the following rules shall apply:
§ Processing shall be disabled by default and shall only enabled by explicit

user configuration.
§ Forwarding of Extracted Packets into the local networks connected to the

receiving device shall be disabled by default and shall be enabled only by
explicit user configuration.

Since different EtherTypes are used for Reduced Overhead and for Full Datagram modes, it is
possible for a tunnel to contain both types of packets simultaneously. Such mixed operation shall
be permitted by this Specification, but this is optional.

5.4 Tunnel-Level	Multi-Path	Operation	
In some applications, the GRE packets can be sent over multiple physical or logical paths to the
receiver. This mode of operation is used in the following scenarios:

• Bonding: the GRE packets are spread over multiple paths to combine them into a higher
capacity link.

• Seamless switching: the GRE packets are replicated over multiple paths for redundancy,
in the same fashion as SMPTE 2022-7.

Senders using tunnel-level multi-path operation should set S=1 in the GRE header and include
valid sequence numbers. Receivers should use the sequence number to re-order the GRE
packets.

5.5 Tunnel	Establishment	

5.5.1 Introduction	(Informative)	
When using an RFC 8086 tunnel, one of the endpoints is the server (listens on some UDP port
for tunnel packets) and the other endpoint is the client (actively sends RFC 8086 packets to the
server). The roles of tunnel client and server are independent of the roles of RIST sender and
receiver. This is further complicated when NAT traversal is required at either end.

In VSF TR-06-1 RIST Simple Profile, the receiver is the server and the sender is the client, as far
as stream transmission is concerned. If the same roles apply for the tunnel (i.e., the RIST receiver
is the tunnel server, and the RIST sender is the tunnel client), operation is straightforward - the
RIST sender starts stream transmission at its convenience - the only difference is that the packets
come out encapsulated in RFC 8086.

However, if the RIST receiver is the tunnel client and the RIST sender is the tunnel server, there
is a startup problem because there is no negotiation in RFC 8086, and in RIST Simple Profile the
receiver does not send anything until it starts receiving from the sender. The same problem exists
when the device is a gateway and the RIST streams are not active or have not been configured.

2020-03-24 15 VSF TR-06-2

The solution to this issue is to require the tunnel client to send some sort of tunnel-level keep-
alive message. This way, the RIST sender becomes aware that the tunnel is up, learns the IP
address of the client, and it can start sending at its convenience.

As far as this particular problem is concerned, an empty message is sufficient. However, adding
this message presents an opportunity to include additional desirable functionality in RIST. This
Specification defines a keep-alive message in sections 5.5.3 and 5.5.4, but allows the use of any
type of periodic GRE-encapsulated message, as long as the requirements of section 5.5.2 are met.

5.5.2 Keep-Alive	Message	Requirements	
The following are the requirements for the keep-alive messages:

● The tunnel client shall start sending messages to the tunnel server as soon as it is enabled.
● The tunnel server shall start sending messages to the tunnel client as soon as it receives

the first message from it.
● Keep-alive messages shall be sent periodically. Transmission frequency shall be between

1 second and 10 seconds. Keep-alive message timeout shall be 60 seconds.
● As long as the tunnel server is receiving keep-alive messages from the tunnel client, it

shall keep sending messages to the tunnel client. If the tunnel server stops receiving
messages from the tunnel client, the tunnel server shall stop sending messages to the
tunnel client after a timeout.

● If an endpoint fails to receive either a keep-alive message or traffic on a session after the
60-second timeout, the endpoint shall consider the session to be terminated and shall
release any resources associated with the session.

● At startup, the tunnel client shall send a minimum of 3 and a maximum of 5 back-to-back
keep-alive messages to the tunnel server to get the connection started.

The requirements of this section shall apply to whatever periodic message is used for the keep-
alive function.

5.5.3 Keep-Alive	Message	Format	
The optional keep-alive message defined in this document, shall be encapsulated in a GRE
packet with Protocol Type set to 0x88B5. The C bit shall be set to zero. The S and K bits shall
be set according to the relevant section of this document. The payload of the keep-alive message
shall be encoded in JSON format, as defined in RFC 8259. The message is depicted in Figure 4,
including a minimal GRE header. Fields shall be in network byte order, MSB first.

2020-03-24 16 VSF TR-06-2

The fields shall be set as follows:

● 48-bit MAC Address: this field should be set to one of the MAC addresses of the device
sending the packet. The MAC address is used for identification purposes and shall be
unique for all devices participating in a RIST Main Profile session. RIST devices
implemented in virtual machines shall take special care to ensure the uniqueness of this
field.

● Capability Flags: these flags shall indicate the enabled capabilities of the device
transmitting the message, as follows:

○ X: More capabilities. If this flag is set, it indicates that there are more capabilities
included in the JSON message. This is reserved for future use.

○ R: Routing capability. If this flag is set, the device is willing to transmit and
receive non-RIST traffic. If it is not set, the remote device shall not transmit non-
RIST traffic. Devices operating with R=0 shall discard all non-RIST packets
received in the tunnel. Devices operating with R=1 should set the S flag in the
GRE header and should include a valid sequence number in that header.

○ B: If this flag is set, device supports Bonding (as specified in RIST Simple
Profile)

○ A: If this flag is set, device supports Adaptive Encoding
○ P: If this flag is set, device supports SMPTE-2022 FEC
○ E: If this flag is set, device supports seamless redundancy switch as per SMPTE-

2022-7 (already in RIST Simple Profile)
○ L: If this flag is set, device supports load sharing. This is reserved for future use.
○ N: If this flag is set, device supports NULL packet deletion (described in section

8.3).
○ D: If this flag is set, this is a Disconnect message (described in section 5.5.5).
○ T: If this flag is set, this is a Reconnect message (described in section 5.5.6).
○ V: If this flag is set, device supports Reduced Overhead Mode (described in

section 5.2.2).

+-+
|C| |K|S| Reserved0 | Ver | Protocol Type = 0x88B5 |
+-+
| |
| 48-bit MAC Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |X|R|B|A|P|E|L|N|D|T|V|J| Rsvd1 |
+-+
| Message Payload (JSON format) |
+-+

Figure 4: Keep-Alive Message

2020-03-24 17 VSF TR-06-2

○ J: If this flag is set, device is capable of sending, receiving and processing JSON
information (described in section 5.5.4).

● Rsvd1: these bits are reserved for future capabilities. Current implementations shall set
them to zero on transmission and ignore them on reception.

As indicated in section 5.5, this Specification allows devices to use any periodic GRE-
encapsulated packet as the keep-alive message. If a device receives periodic keep-alive
messages that do not comply with the format described in this section, it shall make the
following assumptions:

• The sending device is not capable of sending or receiving JSON information – the J flag
in Figure 4 is assumed to be zero.

• The sending device will never issue Disconnect and Reconnect messages (sections 5.5.5
and 5.5.6) and will ignore such messages from the other side of the tunnel.

• The information that would otherwise be indicated by the remaining capability flags in
Figure 4 is unknown. If both sides are manually configured for one or more such
capabilities, the use of the manually configured capabilities shall be allowed. In the
absence of manual configuration, the endpoint shall assume that the feature is not
supported (i.e., the corresponding flag is zero).

• The MAC Address of the remote device is unknown.

5.5.4 Keep-Alive	Message	Payload	
The keep-alive message payload shall be in JSON format for extensibility. Receivers with JSON
support shall parse the message and shall discard any unsupported/unknown data. The JSON
snippet below is an example of the minimum supported data set:

{
 "tunnelIP": "10.0.0.2",
 "remoteIP": "10.0.0.3",
 "excludedIP": ["192.168.1.0/24", "10.10.10.0/25"],
 "routing": true,
 "pskRotation": 600,
 "vendor": {
 "implementation": {
 "version": "2.3.5",
 "product": "Yellow RIST Machine",
 "vendorName": "RIST AG, Inc."
 },
 "features": null
 }
}

The parameters of the JSON keep-alive message shall be defined as follows:

2020-03-24 18 VSF TR-06-2

● tunnelIP: shall be used to communicate the local tunnel IP address to the remote
endpoint. It may be either an IPv4 or IPv6 address. The tunnel client may also use the
values allocateIPv4 or allocateIPv6 to ask the server to allocate a local tunnel IP address
for its use. In this case, the server may use the supplied MAC address to ensure that a
given client gets the same tunnel IP address every time it connects.

● excludedIP: this optional parameter is a list of IP address ranges that the client is not
willing to accept. It shall only be used in client-to-server messages.

● remoteIP: If the client has requested the server to allocate an IP address for its use, this
field shall contain the allocated address. If it is present in the client-to-server message, it
shall be ignored by the server. It shall only be used in server-to-client messages.

● routing: this optional Boolean parameter shall be used to indicate that the sender of the
message is or is not willing to accept and route non-stream traffic. If the routing Boolean
parameter is included, the following shall be implemented:
- If the parameter is set to false, the device shall not allow routing of non-RIST traffic;
the R flag in the capabilities header shall be ignored.
- If the parameter is set to true, then if and only if the R flag is also set to 1, then the
device will allow routing of non-RIST traffic.
This parameter shall be used to turn off the routing of non-RIST traffic if the client and
server cannot agree on the client’s IP address.

● pskRotation: If the tunnel is operating in Pre-Shared Key (PSK) mode, as described in
section 7, the sender may advertise its key rotation period, expressed in seconds, using
this optional field.

● vendor: these optional strings provide information about the device itself:
○ version: software/firmware version number (arbitrary vendor-defined format).
○ product: product name (arbitrary vendor-defined format).
○ vendorName: name of the device vendor (arbitrary vendor-defined format).

● features: This is a placeholder for extensions of the capability flags.

5.5.4.1 Example	Exchange	(Informative)	
Example of a client-to-server message where the client requests that the server allocate an IPv4
tunnel address:

{
 "tunnelIP": "allocateIPv4",
 "vendor": {
 "implementation": {
 "version": "2.3.5",
 "product": "Yellow RIST Machine",
 "vendorName": "RIST AG, Inc."
 },
 "features": null
 }
}

2020-03-24 19 VSF TR-06-2

Upon receiving this message, the server will respond as follows:

{
 "tunnelIP": "10.0.0.2", ßthis is the server’s local IP address
 "remoteIP": "10.0.0.3", ßthis is the IP address the server has assigned to the client
 "vendor": {
 "implementation": {
 "version": "2.3.5",
 "product": "Yellow RIST Machine",
 "vendorName": "RIST AG, Inc."
 },
 "features": null
 }
}

In the above exchange, if the client wanted to declare its IP address instead of asking the server
to allocate one, it would use this IP address instead of allocateIPv4. In this case, the server’s
response would not include the remoteIP entry.

It is possible that the client and server cannot agree on a set of IP addresses. This will happen in
the following situations:

1. Both server and client want to use specific IP addresses, and the selected values are not
acceptable to one of the sides.

2. The client asks the server to allocate an IP address, but sends a list of excluded ranges
that matches the ranges that that server was planning to use for the client.

In these cases, routing is not possible. The endpoint that disagrees with the addresses will send a
JSON message with "routing": false, and from that point on the GRE tunnel described in
this specification will be used only for stream multiplexing. In other words, the "routing"
JSON parameter is used to disable non-RIST traffic between endpoints that are otherwise willing
to support it but cannot agree on IP address assignment.

The protocol exchanges in this example are as follows:

1. Specific IP addresses:
• The client sends the initial keep-alive message(s) with its desired IP address.
• If the server finds the address unacceptable, it will send its keep-alive message

with "routing": false and its own IP address.
• The server may find the IP address of the client acceptable, but the client may

decide that the IP address of the server is unacceptable. From that point on, it
must send "routing": false in its keep-alive messages.

2. Server-allocated addresses:
• The client sends the initial keep-alive message with an excludedIP range.

2020-03-24 20 VSF TR-06-2

• The server is unable to allocate an address that satisfies the client’s request. It will
then send an IP address that may violate the request, and will qualify that with
"routing": false.

Note that routing operation does not require JSON support or even IP address negotiation.
Endpoints may be manually configured with consistent IP addresses (and routing tables if
appropriate). In such cases, it is legal to have R=1 without JSON support (J=0).

5.5.5 Disconnect	Message	
Use of the Disconnect Message is optional but recommended.

Note: Implementers are cautioned that receivers may not make use of this message.

Section 5.5.2 indicates that the tunnel will disconnect on keep-alive message timeout. The keep-
alive message header contains a D bit that may be used to explicitly request a disconnect. Either
the client or the server may initiate a disconnect by sending a keep-alive message with D=1. As a
response, the receiving device should send up to 3 keep-alive messages with D=1 as an
acknowledgement. In any case, upon receipt of a keep-alive message with D=1, the device
receiving the message shall terminate the tunnel and shall stop sending messages if the device
processes the Disconnect Message. The device that initiated the disconnection shall terminate its
side of the tunnel and shall stop sending messages as soon as it receives a keep-alive message
with D=1.

All Main Profile RIST devices should implement support for receiving and processing keep-alive
messages with D=1 as described in this section. A client device receiving a disconnect message
should wait 5 seconds before attempting to connect again to the same server.

A RIST device that intends to terminate the connection may explicitly use the Disconnect
Message or it may simply stop transmitting and let the connection terminate by timeout.

5.5.6 Reconnect	Message	
The keep-alive message header includes the T bit to restart the IP Address negotiation described
in section 5.5.4. It can be initiated either from the server or from the client. If it is initiated from
the server, it shall mean “connect again”. The primary purpose of this mechanism is for an
endpoint to change its tunnel IP address. In a situation where the server is allocating IP addresses
and reconnection is initiated by the client, it is recommended that the server should allocate a
different IP address to the client.

The behavior of devices with respect to the Reconnect Message shall be as follows:

• The device requesting reconnection shall start sending keep-alive messages with T=1
• The remote device, upon receiving T=1, shall restart the IP address negotiation, and shall

send its next message with T=1.

2020-03-24 21 VSF TR-06-2

o If the client started the reconnection, the server shall treat the received message in
the same fashion as an initial connection request.

o If the server started the reconnection, the client shall consider the connection
closed and start it again, transmitting the initial keep-alive message with T=1.

• The originating device shall respond with T=0, terminating the negotiation.
• Upon receiving a message with T=0, the remote device shall also set T=0 on its

messages.

5.5.7 Source	and	Destination	IP	Addresses	in	Tunneled	RIST	Packets	
This section specifies the rules for selecting and processing the source and destination IP
addresses for the GRE-encapsulated IP packets in Full Datagram mode. There are two cases to
be considered:

• Case 1: the endpoints have consistent and agreed upon tunnel IP addresses. This can be
achieved either by JSON negotiation with keep-alive messages, or by manual static
configuration. In both cases, each endpoint knows the tunnel IP address of the other
endpoint.

• Case 2: the endpoints have not completed IP address negotiation, either because they
tried and failed, or because they do not support it. Each endpoint has a tunnel IP address,
but does not know (or does not accept) the other endpoint tunnel address.

For Case 1, there are no restrictions on source and destination addresses. Since the networks are
consistent, users are free to configure whatever addresses they may see fit.

For Case 2, since the tunnel IP addresses are either not known or not consistent, the following
rules shall be followed:

• The destination IP address of the transmitted RIST RTP packets shall be multicast.
• The RIST Simple Profile rules for multicast shall apply. (They are repeated here for the

convenience of the reader, however implementers are encouraged to read the latest
version of VSF TR-06-1):

o RTCP packets, both from the RIST sender and from the RIST receiver, shall be
transmitted to the same multicast address as the RTP flow.

o RTCP packets, both from the RIST sender and from the RIST receiver, shall be
transmitted to UDP port P+1, where P is the destination UDP port of the
corresponding RTP flow.

• The source IP address of the packets should be set to the transmitting endpoint’s tunnel
address.

• When differentiating between streams, a receiver shall use both the multicast destination
address and the UDP port. In other words, receivers shall be required to support
situations where multiple streams use the same UDP destination port and different
multicast destination addresses.

2020-03-24 22 VSF TR-06-2

Note: Implementers may use simplified configuration interfaces for ease of use. For example, a
device that combines the tunnel with the RIST Simple Profile sender (e.g., a multi-channel
encoder) may only expose a list of UDP ports, one per stream, and use a pre-selected default
multicast for the tunnel, and a pre-selected tunnel IP address. Conversely, a combined
tunnel/RIST Simple Profile receiver (e.g., a multi-channel decoder) may automatically detect the
multicast and port. In cases where such pre-selected defaults are used, the device’s user interface
shall provide some indication of what values are being used for ease of interoperation.

Main Profile tunnel gateways (i.e., devices that only implement the tunnel and optionally the
encryption functions and forward the RIST traffic to external RIST devices) may forward the
multicast unchanged, but should remap the source IP address to avoid issues with Reverse Path
Forwarding.

Devices that do not use the keep-alive message defined in this document shall fall into Case 1 if
they have static configurations on both endpoints or into Case 2 if they do not.

5.5.8 Keep-Alive	Message	Fragmentation	
Senders shall not fragment IP-level keep-alive message. The keep-alive message plus the GRE
header plus the DTLS header (if using encryption) plus the UDP/IP headers for the resulting
packet shall be placed into a single MTU. If the sender of the keep-alive message needs to send a
JSON message that does not fit into a single packet, the JSON message shall be broken into
multiple, legal, separate JSON messages, each with a subset of the data.

6 DTLS	Support	
RIST senders and receivers may use DTLS version 1.2 to secure their communication and
authenticate the endpoints. RIST devices offering DTLS support shall implement the DTLS
protocol according to the recommendations of this section. Implementations shall follow RFC
6347 with the additional restrictions described in this document.

RIST devices using DTLS shall implement tunneling as described earlier in this document.

6.1 Session	Establishment	
DTLS sessions shall be established as follows:

• There shall be one single DTLS session carrying the RFC 8086 tunnel packets described
earlier in this document.

• Once negotiation is complete, the RIST sender shall use RIST Simple Profile as per
VSF TR-06-1 over the RFC 8086 tunnel, as described in Section 5.

Note: The roles of DTLS Server and Client are independent of the roles of RIST Sender and
Receiver

Once the session is established, the final tunneled and encrypted packet size should not exceed
the path MTU.

2020-03-24 23 VSF TR-06-2

Note: For RIST Simple Profile flows using transport streams over Ethernet, this is guaranteed
because there are seven transport packets per RTP packet, which will leave enough space for the
additional tunnel headers.

6.2 Supported	DTLS	Cipher	Suites	
The following cipher suites shall be supported by all RIST devices implementing DTLS:

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
• TLS_RSA_WITH_NULL_SHA256

RIST devices shall provide a means for the user to disable individual cipher suites to match their
local policies.

Note: It is understood that disabling individual ciphers may prevent two RIST devices from
establishing communication, if there is no common cipher enabled.

RIST devices may include other cipher suites specified in DTLS in their implementations.

6.3 Certificate	Configuration	

• The DTLS server should be configured with a certificate file – either issued by a
certificate authority, or a self-signed one. There is no limitation to the certificate type, as
long as it is readable by the DTLS library.

• The DTLS client may validate the authenticity of the certificate and may perform
hostname validation. If offered, this shall be a user-configurable option.

• The DTLS client should be configured with a client-side certificate. This can be done
using username/password.

• The DTLS server may validate the client certificate. If offered, this shall be a user-
configurable option,

• Both client and server should use a certified list of CAs. This file may be taken
dynamically from the following link:
https://hg.mozilla.org/releases/mozilla-
beta/file/tip/security/nss/lib/ckfw/builtins/certdata.txt

If offered, the use of a certified list of CAs shall be a user-configurable option.

• When using self-signed certificates, it is up to the two end points to arrange exchange of
the custom proprietary CA used to create such certificates.

2020-03-24 24 VSF TR-06-2

6.4 TLS-SRP	Support	
The TLS-SRP protocol, as described in RFC 5054, is used to securely provide
username/password authentication between devices, as an alternative to using certificates. RIST
devices may implement TLS-SRP as an authentication method. If they do so, the implementation
shall follow RFC 5054, with the following modifications and restrictions:

• RIST devices implementing TLS-SRP shall support the following cipher suites:
o TLS_SRP_SHA_WITH_AES_128_CBC_SHA
o TLS_SRP_SHA_WITH_AES_256_CBC_SHA

• RIST devices implementing TLS-SRP may additionally support any of the other cipher
suites listed in RFC 5054 section 2.7.

• RIST servers implementing TLS-SRP shall be configured with a certificate file. This
certificate file may be self-signed. RIST clients with TLS-SRP support may safely ignore
the certificate expiration date without compromising security.

• In order to make TLS-SRP more secure, RIST servers should implement the following
policies:

o For a given server, user names should be unique across accounts.
o Servers should limit the rate of authentication attempts from a particular IP

address in order to reduce the risk of brute-force password attacks.
o Servers should have reasonable password strength policies in order to reduce the

risk of brute-force password attacks.

7 Pre-Shared	Key	Encryption	Support	
RIST senders and receivers may use Pre-Shared Key Encryption to secure their communication
and authenticate endpoints. When offering PSK encryption, the devices shall implement the
protocol according to the recommendations of this section. The GRE header structures described
in section 5.1 of this document contain the information used to generate and rotate keys and
initialization vectors (IV). With these keys and IV, RIST devices shall encrypt/decrypt the GRE
payload using AES-128/256-CTR. The PSK mechanism described below may be used in either
Full Datagram or Reduced Overhead modes as specified in section 5.2 of this document. The
PSK mechanism shall apply to the payload of the GRE packet – the GRE header shall be
transmitted in the clear.

7.1 GRE	Header	with	K	Field	Turned	On	
Figure 5 shows the GRE header, as pictured in section 5.1 of this document with the optional
field K included. Fields are in network byte order, MSB first.

2020-03-24 25 VSF TR-06-2

7.2 Sequence	and	Nonce	
● When transmitting, devices compliant with this specification shall set the Key field to a

random, non-zero nonce. When a non-zero key is detected, the PSK option shall be
enabled.

● The entire payload of the GRE packet, not including the GRE header, shall be encrypted
between all the endpoints of the tunnel using an AES key derived from the Key field plus
a pre-shared passphrase.

● When the sender enables the PSK option by setting the non-zero K field, it shall also set
the S (sequence number). The 128-bit initialization vector (IV) for the encryption
operation shall be derived by padding the 4-byte S field with 12 bytes of zeros. Bytes 0
through 11 of the IV shall be set to zero, and bytes 12 through 15 shall be set to the value
of the S field, with byte 12 being the MSB of the S field. This process is illustrated in
Figure 6.

● A new nonce shall be generated by the sender at least every time the sequence

counter/number of the GRE packet wraps to zero. This ensures that the same IV + Key
combination is never reused. The sender may rotate the key more often than that.

● The receiver shall inspect the Nonce field for every received packet, and shall re-generate
the key any time it changes.

+-+
|0| |1|1| Reserved0 | Ver | Protocol Type |
+-+
| Key/Nonce |
+-+
| Sequence Number |
+-+

Figure 5: GRE header with Key/Nonce

Figure 6: IV Generation

+-+
|0| |1|1| Reserved0 | Ver | Protocol Type |
+-+
| Key/Nonce |
+-+
| Sequence Number |
+-+

IV

Set to 0

IV Byte 0 IV Byte 15

2020-03-24 26 VSF TR-06-2

7.3 AES	Encryption	Key	and	Sequences	
● AES Encryption Key and Sequences shall be used. The payload shall be encrypted and

decrypted using the Advanced Encryption Standard (AES) and Counter mode (CTR) as
described in RFC 3686 section 2.1, using a 128/256-bit key derived through PBKDF2 as
described in RFC 8018 section 5.2 and Appendix B.1.

● As per RFC 8018, a password is considered to be an octet string of arbitrary length whose
interpretation as a text string is unspecified. In the interest of interoperability, however, it
is recommended that applications follow some common text encoding rules. ASCII and
UTF-8 are two possibilities. Note that octet strings are not required to have null
terminators. If such terminators are desired, implementations shall explicitly include
them by mutual agreement.

● The PBKDF2 function shall default to SHA-256 as the hashing algorithm, with 1,024
iterations.

● PSK implementations may offer other hashing algorithms as per RFC 8018, and other
values of the number of iterations. If such options are offered, they shall be enabled by
explicit out-of-band configuration for all participants. Note that the SHA-1 hashing
function is insecure and should be avoided.

● The key and IV used for both encryption and decryption are described in section 7.1 of
this document. The PBKDF2 function shall use the nonce, transmitted by the sender in
the GRE Key field, as salt to generate the actual key. A numerical example is provided
in Appendix B.

Note: The resulting generated key is valid for up to 232 packets. It is therefore safe to use the
full 32-bit GRE sequence number as IV for the AES operations on single packets. Since the AES
key changes continuously, there is no risk of reusing the same IV within the encrypted flow.

Note: This algorithm does not provide origin authentication. Therefore, it is susceptible to
replay and data injection attacks. However, this risk is mitigated because duplicate and out of
order packets are handled properly by the GRE receiver and/or by the RIST protocol, without
adverse effects to the resulting decrypted output stream.

7.4 On-The-Fly	Passphrase	Change	
On-The-Fly Passphrase Change capability is optional.

In some one-to-many situations, it may become necessary to de-authorize a subset of the
receivers. This section describes an optional mechanism to change the passphrase on-the-fly with
no service interruption for the receivers which remain authorized. The process is as follows:

• A new passphrase is distributed through out-of-band means to the receivers that are to
remain authorized.

• This passphrase is loaded in all the relevant receivers, but remains inactive.

2020-03-24 27 VSF TR-06-2

• Once all the relevant receivers are configured with the new passphrase, the sender
switches to a key generated by this new passphrase. This change is signaled in the GRE
packets.

If On-The-Fly Passphrase Change capability is implemented, the GRE header shall contain one
bit, denoted by B, which identifies the passphrase to be used. The passphrase selected by B=0
shall be denoted as the “even passphrase”, and the passphrase selected by B=1 shall be denoted
as the “odd passphrase”. Bit B shall be the MSB of the Nonce field, as indicated in Figure 7.

Operation shall be as follows:

• All receivers shall use the full 32-bit Nonce field as the Nonce value for key generation.
• Receivers implementing support for odd/even passphrases shall initialize both

passphrases to the same value. This ensures compatibility with senders that do not
support different odd/even passphrases.

• Senders implementing support for odd/even passphrases shall initialize both passphrases
to the same value, and may use any value for the Nonce.

• Passphrase changes shall occur as follows:
o The sender and the receivers who should remain authorized are configured with

the new passphrase.
o The new passphrase shall be associated with the value of B that is not currently in

use. For example, if at configuration time, B=1, then the new passphrase will be
associated with B=0.

o The sender switches to the new passphrase by manual user intervention or other
out-of-band means. At this time, the sender shall generate a new Nonce with the
inverted value of B. In the example above, the new Nonce will be set to B=0.

o The Nonce change will trigger a key recalculation at the receivers. Receivers
supporting odd/even passphrases shall use the new passphrase.

o From that point on, if the sender decides to rotate the key, the new Nonce values
shall have the same value of B.

o This process can be repeated at a later point in time if a new passphrase change is
required.

+-+
|0| |1|1| Reserved0 | Ver | Protocol Type |
+-+
|B| Key/Nonce |
+-+
| Sequence Number |
+-+

Figure 7: GRE Header with Odd/Even Bit B in the Nonce

2020-03-24 28 VSF TR-06-2

7.5 PSK	Authentication	Using	EAPOL-TLS-SRP	
The TLS-SRP protocol, as described in RFC 5054, may be used to securely provide
username/password authentication between devices when using PSK. The details of the TLS-
SRP implementation described in section 6.4. Implementation of this mechanism is optional.

Devices implementing TLS-SRP for authentication of PSK clients shall use the EAP-TLS
protocol, as described in RFC 5216, to implement a TLS handshake channel.

The EAP packets shall be encapsulated into GRE with Ethernet type 0x888E following the
EAPoL specification, as defined in 802.1X-2010 section 11.

At the end of a successful handshake and authentication exchange, the derived key provided by
TLS-SRP shall not be used for any PSK related processing. The encryption key shall be
generated as described in section 7.3.

Once the peer has been authenticated, its source IP address and port combination shall be cached
as authorized and its data be processed normally until the session ends.

The EAP handshake data packets transmitted over the GRE tunnel shall not be encrypted with
PSK encryption.

8 NULL	Packet	Deletion	and	High	Bitrate	Operation	
This section describes an optional RTP header extension to support NULL Packet Deletion and
High Bitrate operation.

8.1 NULL	Packet	Deletion	(Informative)	
One of the most common applications of RIST is to transmit MPEG Transport Streams. Typical
MPEG Transport Streams contain 3 to 5% NULL packets. These packets convey no
information. However, such packets are included for stream timing purposes and cannot simply
be discarded.

The bandwidth used by NULL packets can be saved by transmitting some sort of marker instead
of the packet. In this case, the receiving device can re-insert the NULL packets in the same
position, thus keeping the stream timing intact.

RIST achieves this function by using a bit field on an extension header to indicate the location of
the NULL packets. A typical RTP packet will have up to seven transport packets. If, for
example, three of these seven packets are NULL packets in positions 1, 2 and 6 in the payload,
the RIST sender will transmit a shorter RTP packet with just four transport packets, and a
bitmask with the value 1100010, indicating where NULL packets will need to be inserted in this
group of transport packets. The receiver will infer that the original RTP payload had seven
transport packets (since it received four transport packets plus three flags for the deleted NULL
packets), and the locations of the NULL packets themselves.

2020-03-24 29 VSF TR-06-2

8.2 High	Bitrate	and/or	High	Latency	Operation	(Informative)	
The RTP sequence number is only 16 bits, which means it wraps around every 65,536 packets. If
the RIST link is carrying a 100 Mb/s transport stream, with the usual seven transport packets per
RTP payload, the RTP sequence number will wrap around every 6.9 seconds. When using ARQ
and allowing for the recommended 7 retries, this means that the maximum supportable round-trip
delay is around one second. This is a significant limitation, which gets even worse as the bit rates
go up. Therefore, the sequence number must be extended to support this operation, ideally to 32
bits. The method for extending the sequence number is described in section 8.3 below.

8.3 RTP	Header	Extension	to	Support	NULL	Packet	Deletion	and	Extended	
Sequence	Numbers	

Both NULL Packet Deletion and RTP Sequence Number Extension shall be accomplished using
an RTP Header Extension, as per RFC 3550 section 5.3.1. For convenience, the generic RFC
3550 RTP Header Extension is show in Figure 8 below.

The RTP Header Extension for RIST Main Profile shall be implemented as shown in Figure 9.
Fields shall be in network byte order, MSB first.

The bits in the RTP Header Extension for RIST Main Profile shall be implemented as detailed
below:

● Header Extension Identifier: This is the 16-bit field denoted by “defined by profile” in
Figure 8. For RIST Main Profile, this field shall have the value 0x5249, corresponding to
the ASCII codes for “RI”.

● Length: as required by RFC 3550, this is the length of the header extension in 32-bit
words, excluding the four-octet extension header. For RIST Main Profile, Length shall
always be set to 1.

+-+
| defined by profile | length |
+-+
| header extension |
| |

Figure 8: Generic RTP Header Extension (from RFC 3550)

+-+
| 0x52 (R) | 0x49 (I) | Length=1 |
+-+
|N|E|Size |0 0 0|T| NPD bits | Sequence Number Extension |
+-+

Figure 9: RTP Header Extension for RIST Main Profile

2020-03-24 30 VSF TR-06-2

● N: Shall be set to 1 if Null Packet Deletion is in use. If N=1, the following bits are valid:
○ Size: This is an optional 3-bit field that indicates how many transport packets

were in the original RTP packet. If used, senders shall set this field to the number
of Transport Packets in the original RTP packet. Senders shall set this field to
000 to indicate that the payload size is to be derived from the NPD bits and the
size of the received payload.

○ T: Transport packet size flag. Senders shall set this field to 0 to indicate 188-byte
packets, or shall set this field to 1 to indicate 204-byte packets.

○ NPD bits: Each bit, when set, indicates that a NULL packet has been removed
from the corresponding position. In this field, MSB corresponds to the first
transport packet in the payload. If the original payload has less than 7 transport
packets, the trailing bits that do not correspond to actual packets shall be set to
zero.

If the N bit is set to 0, the content of the Size, T, and NPD bits is undefined and shall be
ignored by the receiver.

● E: Set to 1 if Sequence Number Extension is in use. If E=1, the following field is valid:
○ Sequence Number Extension: this is a 16-bit RTP sequence number extension,

in network byte order (big-endian). A 32-bit sequence number is created by using
the 16-bit RTP sequence number as the LSB and this field as the MSB.

If the E bit is set to 0, the content of the Sequence Number Extension field is undefined
and shall be ignored by the receiver.

A sender that only implements NULL packet deletion may omit the RTP extension header for
RTP payloads not containing NULL packets. More specifically, a header where E=0, N=1, and
NPD=0 may be omitted.

8.4 NACK	Packet	Support	for	Extended	Sequence	Numbers	
The NACK packets defined in section 5.3 of VSF TR-06-1, RIST Simple Profile, use 16-bit
sequence numbers. An extension to NACK packets is defined in this section to support
Extended Sequence Numbers.

This document defines a new RTCP packet. This new packet, denoted as EXTSEQ, conveys the
higher 16 bits of the sequence number for the following NACK packet.

When EXTSEQ packets are in use, the RTCP compound packet stack shall be as follows: RR,
CNAME, EXTSEQ and NACK. The full 32-bit sequence number for each entry in the NACK
packet shall be built by pre-pending the 16 bits carried in the EXTSEQ packet with the 16-bit
sequence number in the NACK packet. For Bitmask-based retransmission requests, the 16-bit
sequence number in the NACK packet is carried in the Packet ID (PID) field of the FCI. For
Range-based retransmission requests, the 16-bit sequence number in the NACK packet is carried
in the Missing Packet Sequence Start field.

2020-03-24 31 VSF TR-06-2

If the RIST receiver needs to send NACKs for packet blocks (ranges or bitmasks) that have
different high-order extension values, these requests need to be separated with a new EXTSEQ
packet. The compound RTCP packet will then become RR, CNAME, EXTSEQ, NACK,
EXTSEQ, NACK. The RIST receiver may also break this message into two RTCP compound
packets, one for each value of EXTSEQ.

The EXTSEQ RTCP packet shall be implemented as an Application-Defined packet, using
“RIST” as the name and a subtype of “1”, as indicated in Figure 10. Fields are in network byte
order, MSB first.

Where:

SSRC of media source: 32 bits
The synchronization source identifier of the media source that this feedback
request is related to. As indicated in VSF TR-06-01, the LSB of the SSRC is used
to differentiate between original packets and retransmitted packets. The RIST
receiver may use either value in the request packet.

Sequence Number Extension: 16 bits
MSB for all the NACK starting sequence numbers that follow this RTCP packet,
in network byte order (big endian).

8.5 NULL	Packet	Deletion	Example	(Informative)	
The NULL Packet Deletion technique described in this document supports RTP payloads of less
than seven transport packets. The actual number of transport packets in the RTP payload can be
determined by adding the number of packets actually received in the payload to the number of
bits set in the NPD field. The suggested processing of the NPD field is as follows:

• Process the NPD field from MSB to LSB
• For each bit in the NPD field:

o If the bit is 1, output a NULL packet
o If the bit is 0, output the next transport packet from the payload

• Stop when either one of the following conditions are true:

 +-+
 |V=2|0|Subtype=1| PT=APP=204 | length=3 |
 +-+
 | SSRC of media source |
 +-+
 | 0x52 (R) | 0x49 (I) | 0x53 (S) | 0x54 (T) |
 +-+
 | Sequence Number Extension | reserved=0 |
 +-+

Figure 10: RIST EXTSEQ RTCP Packet

2020-03-24 32 VSF TR-06-2

o All the seven bits in the NPD field have been processed
or

o The current bit in the NPD field is 0 but there are no more transport packets in the
payload

Note that it is possible to construct packets that have an invalid combination of NPD bits and
payload packets. Such invalid packets can be classified into two types:

1. Packets whereby the sum of the NPD bits set to one plus the received payload transport
packets is more than seven (i.e., too many packets).
or

2. Packets whereby there is at least one NPD bit set to one, and the number of NPD zero
bits in more significant positions than the lowest significant NPD bit set to one is more
than the number of received payload packets (i.e., not enough packets). For example, if
the lowest significant NPD bit set to one is bit 4, this number will be the number of NPD
bits set to zero in bit positions 5 and higher.

The receiver behavior in such error situations is left to the discretion of the implementer. In such
cases, receivers should give priority to transmitting the actual payload transport packets. The
receiver may use the Size field in the header if coded as an additional indicator. If there is a
mismatch between the Size field and the payload size computed from the NPD bits plus the
number of received transport packets, it is recommended to use the latter.

It is also possible to have a mismatch between the T bit (which selects 188/204 packet size) and
the payload. In such cases, it is recommended that the payload size take precedence. The T bit is
only useful for payloads composed of only NULL packets.

The following is an example of processing a set of variable-size RTP payloads. Assume that the
following set of packets are to be transported:

• An RTP datagram with 7 TS packets where packets 1, 2 and 7 are NULLs.
• An RTP datagram with 3 TS packets where packets 1 and 3 are NULLs.
• An RTP datagram with 5 TS packets where all the packets are NULLs.
• An RTP datagram with 4 TS packets where packets 3 and 4 are NULLs.

Using NULL Packet Deletion, the corresponding RTP packets are:

• An RTP datagram with NPD=1100001 and 4 TS packets in the payload
• An RTP datagram with NPD=1010000 and 1 TS packet in the payload
• An RTP datagram with NPD=1111100 and no (zero) TS packets in the payload
• An RTP datagram with NPD=0011000 and 2 TS packets in the payload

The receiving device processes these RTP datagrams as follows:

2020-03-24 33 VSF TR-06-2

• NPD=1100001 shows 3 NULL packets, and there are 4 packets in the payload. Therefore,
this will be a 7-TS datagram. The locations of the NULLs are positions 1, 2 and 7.

• NPD=1010000 shows 2 NULL packets, and there is one packet in the payload. Therefore,
this will be a 3-TS datagram. Based on this determination, only the first 3 bits of the NPD
are processed, and the resulting RTP datagram will contain 3 TS packets with NULLs in
positions 1 and 3, and the payload packet in position 2.

• NPD=1111100 shows 5 NULL packets, and there are none in the payload. Therefore, this
will be a 5-TS datagram. Based on this, the resulting RTP datagram will have 5 NULL
packets.

• NPD=0011000 shows 2 NULL packets, and there are two more in the payload.
Therefore, this will be a 4-TS datagram. NPD indicates that the two payload packets are
transmitted first, followed by two NULL packets.

8.6 Combining	NULL	Packet	Deletion	and	Sequence	Number	Extension	with	
SMPTE-2022-1	FEC	

The extensions described in this section may be combined with SMPTE-2022-1 FEC, as
described below. In all cases, the RTP stream containing the media shall be transmitted
unmodified in accordance with the previous sections of this document.

Note: The use of an extension header is not compatible with SMPTE-2022-2 operation.

8.6.1 Sequence	Number	Extension	
If Sequence Number Extension is in use, the SNBase ext bits field in the FEC header described
in section 8.4 of SMPTE-2022-1 shall be set to the lower 8 bits of the Sequence Number
Extension, as indicated in Figure 11.

8.6.2 NULL	Packet	Deletion	
If NULL Packet Deletion is in use, the order of operations at the sender shall be as follows:

• The data_bytes (content) of any NULL packets in the payload shall be replaced by 0xFF
for the purposes of FEC computation.

• The continuity_counter, transport_error_indicator and transport_priority fields of
any NULL packets in the payload shall be replaced by zero for the purposes of FEC
computation.

+-+
| SNBase low bits | Length Recovery |
+-+
|E| PT recovery | Mask |
+-+
| TS recovery |
+-+
|N|D|type |index| Offset | NA |SNBase ext bits|
+-+

Figure 11: FEC Header (from SMPTE-2022-1)

2020-03-24 34 VSF TR-06-2

• FEC packets shall be computed before NULL Packet Deletion, using the modified NULL
packets as above.

• The FEC XOR operation shall only include the payload, and shall not include the
extension header described in this document.

• NULL Packet Deletion shall be performed after the FEC computation and before the
packets are transmitted.

At the receiving side, NULL packets shall be re-inserted back into the RTP payload, with
data_bytes (content) set to 0xFF, continuity_counter, transport_error_indicator and
transport_priority set to zero, before the FEC computation happens.

9 Compatibility	between	RIST	Main	Profile	and	Simple	Profile	Devices	
RIST Main Profile adds a number of features to Simple Profile, but the underlying transport
mechanism is still Simple Profile. Therefore, RIST Main Profile devices shall support operation
in Simple Profile mode.

In RIST Simple Profile, the sender is always the client and the receiver is always the server.
Stream transmission is always initiated by the sender. If the sender is a RIST Main Profile
device, the selection between RIST Main Profile and RIST Simple Profile shall be manually
configured.

Note: For a RIST Main Profile receiver operating as a server, the following profile mismatch
situations can happen:

• Case 1: the receiver is configured for Simple Profile (and thus listening on ports P and
P+1) and receives a Main Profile keep-alive message (or a DTLS connection) on either P
or P+1.

• Case 2: the receiver is configured for Main Profile (and thus listening on a single port P)
and receives either RTP or RTCP packets on that port.

For either case, the receiver can discard the packets and it is recommended that it provide the
user with some indication of this fact. Alternatively, receivers can operate as follows:

• For Case 1, the receiver can distinguish between the Simple Profile packets and the Main
Profile packets, so it could automatically go into Main Profile mode and complete the
negotiation.

• For Case 2, the receiver can try to operate in Simple Profile mode. This might or might
not be possible depending on the configuration of the firewalls upstream of the receiver.

2020-03-24 35 VSF TR-06-2

Appendix	A Certificate	Management	(Informative)	
This Appendix describes a number of options for managing client and server certificates for
devices using RIST Main Profile with DTLS encryption.

A.1	 Certificate	Processing	
DTLS includes the option of supporting both server and client certificates for authentication.
Processing of a certificate includes the following operations on the device that is checking the
certificate:

• Has the remote site presented a certificate?
• If a certificate is presented, is this certificate signed by a Certificate Authority (CA) or

CA chain that is trusted by the device checking it?
• If the certificate is signed by a CA trusted by the device, is the remote side allowed to

connect to the device checking the certificate?

The processing of certificates is independent of which device is the server and which device is
the client. Each device will do its own processing and decide, independently, whether it is
willing to continue with the connection.

The final responsibility for defining certificate processing policies rests with the end-user of the
RIST system. Implementers are encouraged to provide as much flexibility as possible, in order
to not limit the options available to end users.

A.2	 Discussion	of	Certificate	Authorities	(CA)	
A certificate is normally signed by a Certificate Authority (CA). There are a number of public,
trusted CAs available on the Internet. Web sites that need to guarantee their identity, such as
those from banks, use certificates signed by a public CA. On the other hand, anybody can create
a CA and use that to sign certificates. One typical example of using a “private” CA is VPN
servers – they typically act as their own CA and will only accept certificates signed by their
private CA.

When a device is checking a certificate, it needs to decide whether or not it trusts the CA who
signed it. Implementers are encouraged to provide the following options to their users:

• Accept certificates signed by one of the known public CAs. This may be applicable for
servers with fixed IP addresses or host names.

• If the device operates as a server, provide the option for it to become its own CA and sign
all the certificates, as it is typically done with VPN servers.

• Provide the option for the user to employ an external CA independent of the device. More
specifically, the user should be able to configure the device to use an arbitrary CA.

In the remainder of this section, it is assumed that one of the previous options for CA selection is
in use, and, during the certificate exchange, the CA is deemed acceptable by the device checking
the certificate.

2020-03-24 36 VSF TR-06-2

A.3	 Remote	Certificate	Processing	at	the	Local	RIST	Device	
Implementers are encouraged to provide the following options to end-users regarding the
decision to accept or reject certificates in RIST devices:

• Accept all certificates, regardless of CA (for testing). If the device is a server, this means
that any device can connect to it; if the device is a client, it means that connections with
any server will succeed. It is strongly suggested that this option be disabled by default,
and that the device be in alarm mode for as long as this option is enabled.

• Accept all certificates that have been signed by one or more configured CAs. The user
may have their own CA (either integrated with the server or separate from it), and only
certificates signed by this private CA will be accepted. Alternatively, the device may be
configured to accept certificates signed by public CAs. This provides a very basic level
of authentication without too much configuration burden. Implementers should consider
making this option the default to ease initial setup.

o If this option is provided, implementers are encouraged to provide the means to
create a blacklist in the device – in other words, “accept all certificates signed by
this CA except the ones in this list”. This addresses the case where a remote
device is no longer trusted.

• Provide a list of acceptable certificates (a whitelist), and only devices presenting
certificates in that list are allowed to connect. Connections from remote devices
presenting certificates signed by the acceptable CA but not this list will be rejected. If
the local device is a server, this will be a list of allowed clients; if the local device is a
client, this will be a list of the servers it is allowed to connect to. If a remote device is no
longer trusted, its certificate can be removed from the list.

Note that certificates may be encrypted. Support for encrypted certificates is optional.

A.4	 Notes	on	Whitelists	and	Blacklists	
In order to implement either a whitelist or a blacklist, the device needs to use one of the
certificate fields as the identifying entry for deciding whether or not the certificate is in the list
(either white or black). It is suggested that the Common Name (CN) field be used.

A.5	 Certificate	Signing	Requests	
As indicated before, a device may need to present a valid certificate to the remote endpoint for
the connection to succeed. This certificate may be obtained in the following two ways:

1. The remote endpoint (typically a server) generates a full set of credentials for the device,
which includes both the certificate and the private key. This set of credentials, possibly
protected by a passphrase to keep the key secret, is then provided to the device.
or

2. The device generates a private key by itself. This key will never leave the device for
security reasons. After generating the key, the device generates a Certificate Signing
Request that can be sent as a file to the remote endpoint for signing by whatever CA is

2020-03-24 37 VSF TR-06-2

acceptable to it. The remote endpoint then generates a certificate chain that that is
returned to the device. This certificate chain does not include the private key and does
not need to be kept secret.

Implementers are encouraged to provide enough functionality to support both cases described
above.

A.6	 Certificate	and	Key	File	Formats	
In order to foster interoperability, it is important that the devices from different implementers
agree on file formats. Devices may need to be configured with a list of one or more acceptable
CAs, and may need to be configured with the certificates they need to use. These certificates
may be coming from equipment provided by a different implementer. Therefore, a common file
format needs to be agreed between these devices.

It is suggested that, as a baseline, all equipment should support the PEM format, as defined in
RFC 7468. A PEM file is a text file, with the binary data encoded in Base64, and can include
one or more certificates and may also contain keys. It is also suggested that a single file be
provided with all the information required – i.e., the CA chain, the certificate, and the private key
if needed. When using the PEM format, these can be simply concatenated. The device should
not assume any particular order for these items.

An example of a combined file with a certificate and keys is:

-----BEGIN CERTIFICATE-----
MIIDfjCCAuegAwIBAgIJALYx7VgDX7U1MA0GCSqGSIb3DQEBBQUAMIGHMQswCQYD
VQQGEwJVUzELMAkGA1UECBMCQ0ExEDAOBgNVBAcTB1Nhbkpvc2UxFzAVBgNVBAoT
… (certificate continues)
gQBAYeJpSnoKWk3c5Uy0PZl+/8ee9AZ/swYiES2+ehy/d4EGofuH4K+SFIx9fpH1
zg507vBRNwiAegiawxkpMhsptV3Hv5rkFy0/nkg/uYKewOu6O0k1XEM7LbRiOumf
cGA5sNColbALctgBd49Alf19sQPsvXhjjAuFqoPGNOF/Wg==
-----END CERTIFICATE-----
-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQDgtzWVqihnzLhUTtAyGvab57IzqHu0R4j9C7QOArl/dqgrgBA9
wtgRp3zwU9UHgrmzK++6NByA+VxsnGtVpl9RsiiUk0T+8uI4UcapeUE3AThQ29WE
… (key continues)
BUsETpWaKtebcnUuIaMCQQDUCipcuTEu9ITBf1uK9BNB2KQ1weF4q4pT2IjdFBEA
g1FDrlIqP72OQodz54Xw+aWH314pMofAKcaIp1HCL69i
-----END RSA PRIVATE KEY-----

As indicated in the example, each element starts with five dashes and the word BEGIN, followed
by the type of the element, followed by another five dashes. The element ends the same way:

2020-03-24 38 VSF TR-06-2

five dashes, followed by the word END, followed by the same element type, followed by another
five dashes.

2020-03-24 39 VSF TR-06-2

Appendix	B PSK	Key	Generation	Example	(Informative)	
This appendix provides one example of 128-bit and 256-bit AES keys generated from a known
passphrase and nonce. It is provided to allow implementations to be checked against known
values.

The inputs are:

• Passphrase: Reliable Internet Stream Transport
• Nonce: 0x52495354

Figure 12 shows the packet received from the network with the above nonce.

Using the PBKDF2 hashing algorithm specified in section 7.3, the following keys are derived
from this input:

• 128 bit key: 1c2b0cfc90ae2638fea78c7fb2977047
• 256 bit key: 1c2b0cfc90ae2638fea78c7fb297704718bff7f4052743001a9b7ebb51cc9f1c

The following Python 3 code can be used to generate the keys:

import hashlib

key = hashlib.pbkdf2_hmac("sha256", b'Reliable Internet Stream Transport',
bytes.fromhex('52495354'), 1024, 16)
print("Derived 128 bit key:", key.hex())

key = hashlib.pbkdf2_hmac("sha256", b'Reliable Internet Stream Transport',
bytes.fromhex('52495354'), 1024, 32)
print("Derived 256 bit key:", key.hex())

+-+
|0| |1|1| Reserved0 | Ver | Protocol Type |
+-+
| 0x52 | 0x49 | 0x53 | 0x54 |
+-+
| Sequence Number |
+-+

Figure 12: Sample Received GRE Packet

2020-03-24 40 VSF TR-06-2

Appendix	C Supporting	Multiple	Clients	Using	the	Same	Server	UDP	
Port	(Informative)	

A RIST Main Profile server may offer the option of supporting multiple clients connected to the
same UDP port. From a traffic standpoint, the server can differentiate the packets from the
various clients by using the combination of the source IP address and source UDP port in the
packet. Simple application examples for this use case are:

• Multiple reporters in the field, each equipped with an encoder, sending live video content
back to the newsroom. Having a single UDP port open to receive all communication at
the newsroom simplifies the setup of the encoders.

• Multiple decoders connecting to an encoder to receive live video.

There are situations where it becomes necessary to uniquely identify the client in order to either
send specific content to it, or to direct the content coming from it to a specific receiver. One
example would be a situation where there are multiple feeds available at one site, and when a
client connects, the “correct” feed needs to be sent to it.

The following RIST Main Profile mechanisms are available to uniquely identify the clients:

1. If DTLS is used with certificates, the various clients may be identified by the certificates
they present to the server (see the discussion in Appendix A). It is suggested that the
Common Name (CN) be used as the identifier. In this case, the system configuration
must ensure that each client has a different CN.

2. If TLS-SRP is used (see Section 6.4), each client will have a different username and
password, and this combination may be used to differentiate between clients.

3. If the keep-alive messages defined in Section 5.5.3 are used, the 48-bit MAC address
included in the message may be used to differentiate between clients. Implementations
must ensure that the MAC addresses in the keep-alive messages are unique.

4. Clients may be differentiated using the inner (tunnel) IP address. In this mode, addresses
are assigned a-priori by static configuration and are known to the server and clients. The
server can detect the client inner (tunnel) IP address using one of the following
mechanisms:

a. If the keep-alive messages defined in Section 5.5.3 are used, and the message has
a JSON payload as described in Section 5.5.4, the server can inspect the
tunnelIP element to find the client’s tunnel IP address.

b. If the server and clients are using the Full Datagram Mode defined in Section
5.2.1, the inner (tunnel) IP address can be read from the incoming encapsulated
packets. Note that, in this case, the client cannot be identified until it sends its
first encapsulated IP packet.

5. If the server and clients are using the Reduced Overhead Mode defined in Section 5.2.2,
the source UDP port in the reduced UDP header shown in Figure 3 can be used to

2020-03-24 41 VSF TR-06-2

differentiate clients. In this mode, ports are assigned a-priori by static configuration and
are known to the server and clients. Note that, in this case, the client cannot be identified
until it sends its first encapsulated IP packet.

If possible, the preferred way to identify the clients should be options 1 or 2 above. Options 3, 4,
and 5 do not require the use of DTLS and are available to clients without encryption support.
Option 5 should only be used as the last possible resort, if no other options are available.

